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Abstract

This paper is focused on a robust saturation controller for the linear time-invariant (LTI) system involving both

actuator’s saturation and structured real parameter uncertainties. The controller suggested in this paper can analytically

prescribe the upper and lower bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the

system in the presence of actuator’s saturation. The suboptimal bang–bang control method is extended to LTI system with

parameter uncertainties. Based on affine quadratic stability and multi-convexity concept, the robust optimal bang– bang

controller is newly derived by minimizing the time derivative of affine Lyapunov function subjected to the limit of control

force. Since this controller is a gain-scheduled type, it requires the exact knowledge of uncertain parameters. Another

robust saturation controller with a fixed gain is proposed and the linear matrix inequality (LMI)-based sufficient existence

conditions for a fixed-gain controller are derived. The effectiveness and the availability of the proposed controller are

investigated by a practical numerical example. Through numerical simulations, it is confirmed that the proposed robust

saturation controller is robustly stable with respect to parameter uncertainties over the prescribed range defined by the

upper and lower bounds.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Most of the actuation devices are subject to magnitude saturation. The physical inputs such as force, torque,
thrust, stroke, voltage, current, and flow rate of all conceivable applications of current technology are
ultimately limited. Unexpected large amplitude disturbances can push systems’ actuators into saturation, thus
forcing the system to operate in a nonlinear mode for which it was not designed and in which it may be
unstable [1]. In recent years, research on the active control of civil engineering structures such as bridges and
buildings has received increasing attention [2–4]. Many control strategies have been developed with the goal of
protecting buildings subjected to weak and moderate earthquakes. But one of the main difficulties in realizing
the active control systems to protect the building against strong earthquakes is the demand of unrealistic large
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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control force. With the linear active controller such as linear quadratic regulator (LQR) which has been used
extensively in many structural control applications, the applied control force is a linear combination of the
structural responses. Therefore, the maximum control force will correspond to the peak response which
actually occurs only for a few times during strong earthquakes. Thus the design of an actuator based on the
maximum demand of control force is inefficient and uneconomical. Saturation control considering the limit of
control force is known to be able to embrace this problems and, furthermore, to be more effective in the
reduction of structural response than the linear control algorithms under strong earthquakes [5–9]. Most of
the existing saturation control algorithms are developed in nominal linear time-invariant (LTI) system.
Because inherent modeling errors between mathematical models and real-world systems are unavoidable,
active controller for systems with actuator’s saturation should be designed to be robust with respect to system
uncertainties.

The bang–bang control, which minimizes a performance index subjected to the control force constraint, has
been continuously investigated by several authors in optimal control theory [10–12]. The main shortcoming of
the bang–bang control becomes clear when one wants to apply this control method to the structural control.
First, because control force is not a function of state but of co-state, the on-line computation process of it will
significantly increase the time delay and may lead to instability due to the accumulated error in on-line
numerical evaluation. Second, the undesirable control chattering near the origin of state space due to high-
frequency switching of control force often occurs and great care should also be taken against spillover
instability at higher modes. Some studies have been investigated to overcome these shortcomings. Mongkol
et al. [5] proposed the linear saturation control method which consists of a low-gain linear control when the
system is close to the zero state and the bang–bang control otherwise. They showed a scheme to synthesize the
switching surface that is needed to implement the bang–bang control as well. Indrawan et al. [6,13] developed
the bound-force control method which excludes the control-effort penalty from the performance index defined
in the case of LQR control and defines it at the end of each time interval and seeks the optimal control force
for each time interval. Wu and Soong [7] introduced the suboptimal bang–bang control described by a
function of state. In the suboptimal bang–bang control, the control force is determined by minimizing the time
derivative of a quadratic Lyapunov function under the control force constraint. Wu and Soong [7] also
proposed the modified bang–bang control method which overcomes control chattering problem of the
suboptimal bang–bang control. This method is found to be effective under a certain range of control force but
it can be unstable outside of this range. To overcome this instability, Lim et al. [8] proposed an adaptive
bang–bang control algorithm. All the aforementioned bang–bang-type control algorithms guarantee only
stability for nominal LTI system and do not explain analytically the robustness with respect to parameter
uncertainties of the system.

To explain robust stability of the saturation control, there were some attempts using the property of the
robustness of the sliding-mode control (SMC) with respect to parameter uncertainties. Cai et al. [14] proposed
the modified sliding-mode bang–bang control method based on a combination of the SMC control and
the modified bang–bang control methods. They tried to determine whether there exists a sliding mode on the
switching surface. But they reached to the following meaningless result: sliding mode only exists on the
switching surface at least near the origin of the system. Yang et al. [9,15] presented the saturated SMC method
based on the theory of the SMC and proved it to be an effective method in vibration control for civil building
structures. This method can be applicable only to the stable open-loop system. Even though this method is
robust with respect to parameter uncertainties of the system, it cannot prescribe the bounds of parameter
uncertainties of the system within which closed-loop robust stability is guaranteed for certain. The complete
response of a SMC system consists of two phases of different modes: the reaching mode and the sliding mode.
Robustness of the SMC with respect to parameter uncertainties is guaranteed only in the sliding mode.
Therefore the robustness of the SMC is not guaranteed over the complete response of a SMC system.
Furthermore, when the actuators saturate, system trajectories are in the reaching mode for more time than
unsaturated system and bounds of parameter uncertainties are narrower than unsaturated system.

To the author’s knowledge, studies on robust saturation controller, which analytically address bounds of
parameter uncertainties within which closed-loop robust stability of uncertain LTI system is guaranteed in the
presence of actuator’s saturation, have not been presented. In this paper, we focus on developing robust
saturation controller guaranteeing robust stability of uncertain LTI system over the prescribed upper and
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lower bounds of structured real parameter uncertainties. In high-rise building, masses, stiffnesses, and
damping coefficients are physical system parametric uncertainties. Because these uncertainties are regarded as
time-invariant, we can model high-rise building as LTI vibrating system with uncertain masses, stiffnesses, and
damping coefficients (or uncertain natural frequencies and damping ratios). Approach of expressing system
uncertainties as structured real parameter uncertainties is known to be an effective way of describing the
modeling errors in state space. Through this approach, the controller can be designed to guarantee robust
stability and/or performance for given bounds of each parameter uncertainty. To reduce conservatism of the
classical quadratic stability test, both uncertain LTI system and its Lyapunov function are assumed to be
affine in time-invariant uncertain real parameters. Suboptimal bang–bang control method, which is designed
based on Lyapunov stability condition for nominal LTI system, is extended to this uncertain LTI system. The
robust optimal bang– bang controller is newly derived by minimizing the time derivative of affine Lyapunov
function subjected to the limit of control force. In this case, the affine quadratic stability (AQS) definition and
multi-convexity concept [16] to reduce the problem to linear matrix inequality (LMI) problem are introduced.
Unfortunately, this controller is gain-scheduled type and its implementation requires the exact knowledge of
uncertain parameters. A robust saturation controller with fixed gain, which does not require the knowledge of
uncertain parameters, is proposed by modifying this controller. LMI-based sufficient existence conditions are
presented to design this proposed controller. A practical numerical example is illustrated to verify the
availability and the effectiveness of the proposed controller. It is shown through numerical simulations that
the proposed robust saturation controller with a fixed gain is robustly stable with respect to parameter
uncertainties over the prescribed upper and lower bounds.

2. Affine quadratic stability

We first review the AQS test which is used as an analytical tool for our robust saturation control. Even
though it is much more difficult to deal with its analysis mathematically, the AQS test can analyze robust
stability of linear systems with uncertain real parameters which are time-invariant or time-varying. In robust
controller design, we can obtain robust stability tests for systems under various model uncertainty
assumptions through the use of various stability analyses. Bounds of parameter uncertainties are different
according to how to represent model uncertainties and how to approach stability analysis. The classical
quadratic stability test guarantees robust stability against arbitrarily fast parameter variations [17]. As a result,
this quadratic stability test can be very conservative for constant parameters or slow-varying parameters.
However, the AQS test is applicable to both constant and time-varying uncertain parameters and much less
conservative than the quadratic stability test in the case of constant parameters or slow-varying parameters.
This AQS test is an extension of the notion of quadratic stability where the fixed quadratic Lyapunov function
is replaced by a Lyapunov function with affine dependence on uncertain parameters. This paper is concerned
with the LTI system with constant uncertain real parameters that can be described by state space equation of
the form

_xðtÞ ¼ AðyÞxðtÞ; xð0Þ ¼ x0, (1)

where state vector is x 2 Rn, y ¼ ðy1; y2; . . . ; yK Þ 2 RK is a vector of uncertain real parameters, and the
system matrix AðyÞ is assumed to be stable and depends affinely on the parameters of yi. That is

AðyÞ ¼ A0 þ y1A1 þ y2A2 þ � � � þ yK AK , (2)

where A0;A1;A2; . . . ;AK are known fixed matrices.
We assume that lower and upper bounds are available for the parameter values. Specifically, each parameter

yi ranges between known external values yi and yi.

yi 2 ½yi; yi� for i ¼ 1; 2; . . . ;K . (3)

This means that the parameter vector y is valued in a hyper-rectangle called the parameter box. In the sequel

Y :¼ fðo1;o2; . . . ;oK Þ : oi 2 fyi; yigg (4)

denotes the set of the 2K vertices or corners of these parameters.
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The following notion of parameter-dependent Lyapunov function is introduced to reduce conservatism of
the classical quadratic stability test when system (1) is affine in y with time-invariant parameters.

V ðx; yÞ ¼ xTPðyÞx, (5)

where PðyÞ is an affine function of y.

PðyÞ ¼ P0 þ y1P1 þ y2P2 þ � � � þ yK PK . (6)

Using this parameter-dependent Lyapunov function we can define AQS for the LTI systems with constant
uncertain real parameters (1) as follows.

Definition 1. (AQS, Gahinet et al. [16]). The LTI system with constant uncertain real parameters (1) is said to
be affinely quadratically stable if there exist K þ 1 symmetric matrices P0;P1;P2; . . . ;PK such that

P0 þ y1P1 þ y2P2 þ � � � þ yK PK40, (7)

AðyÞTPðyÞ þ PðyÞAðyÞo0 (8)

hold for all admissible trajectories of the parameter vector y ¼ ðy1; y2; . . . ; yK Þ.

Definition 1 expresses that V ðx; yÞ40 and dV ðx; yÞ=dto0 for all admissible parameter trajectories. Recall
that the AQS test is much less conservative than the classical quadratic stability test seeking a fixed parameter-
independent Lyapunov function along all admissible parameter trajectories. By imposing additional ‘‘multi-
convexity’’ constraints on the parameter-dependent Lyapunov function, finding an affine Lyapunov matrix
PðyÞ can be turned into an LMI problem with variables P0;P1;P2; . . . ;PK [16]. Efficient polynomial-time
optimization algorithms are available to solve this [18] because LMI problems are convex. Note that more
general definition of AQS can be handled for uncertain linear system with time-varying parameter
uncertainties by adding lower and upper bounds on rate of variation of parameter uncertainties [16].
3. Gain-scheduled robust optimal bang–bang controller

We focus on designing robust saturation controller, which guarantees stability of uncertain LTI system with
actuator saturation, over the prescribed upper and lower bounds of structured real parameter uncertainties
analytically. Suboptimal bang–bang control method [7], which is designed based on Lyapunov stability
condition for nominal LTI system, is extended to uncertain LTI system. To reduce conservatism of classical
quadratic stability, both uncertain LTI system (1) and its Lyapunov function (5) are affine in time-invariant
uncertain real parameters. In this section, the robust optimal bang–bang controller is derived by applying the
AQS definition and minimizing the time derivative of affine Lyapunov function subjected to the limit of
control force. To focus our attention on designing robust saturation controller based on AQS, we add control
force term to Eq. (1). We consider the following uncertain LTI system:

_xðtÞ ¼ AðyÞxðtÞ þ BuðtÞ; xð0Þ ¼ x0 (9)

with control force constraint.

juðtÞjpumax, (10)

where B is control input vector, and u is scalar control force.
For uncertain LTI system (9), a parameter-dependent Lyapunov function (5) is defined. The time derivative

of this Lyapunov function is of the following form:

_V ðx; yÞ ¼ xT½AðyÞTPðyÞ þ PðyÞAðyÞ�xþ 2xTPðyÞBu. (11)

The optimal control force of minimizing this time derivative of parameter-dependent Lyapunov function
under the control force constraint (10) takes the form

uðtÞ ¼ �umax � sgn½B
TPðyÞxðtÞ�, (12)
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where PðyÞ satisfies the following equations which correspond to 2Kþ1 þ K LMI conditions:

PðoÞ40 for all o 2 Y, (13)

AðoÞTPðoÞ þ PðoÞAðoÞo0 for all o 2 Y, (14)

AT
i Pi þ PiAiX0 for i ¼ 1; 2; . . . ;K. (15)

Since both AðyÞ and PðyÞ are affine in y, assessing whether system (1) is affinely quadratically stable is not
tractable in general, neither analytically nor numerically. In particular, it is no longer sufficient to check
Eqs. (13) and (14) at the vertices of the parameter box because Eq. (14) is a nonconvex problem. To reduce
Eq. (14) to a finite set of LMI constraints, we must further restrict the choice of affine Lyapunov matrix PðyÞ.
The additional ‘‘multi-convexity’’ constraint (15) reduces the problem of finding affine parameter-dependent
Lyapunov matrices to an LMI problem [16].

This robust optimal bang– bang controller is gain-scheduled type. Note that the robust optimal bang– bang

controller derived by applying classical quadratic stability is not gain-scheduled type but a fixed-gain type
because this seeks a fixed parameter-independent Lyapunov function. As in the case of linear controller design
method using parameter-dependent Lyapunov function [19–21], we know that this gain-scheduled robust

optimal bang– bang controller derived by applying AQS makes bounds of parameter uncertainties much
broader than those of a fixed-gain controller derived by applying quadratic stability.

4. Robust saturation controller with a fixed gain

Because the optimal control force in Eq. (12) is the function of uncertain parameters y, the robust optimal

bang– bang controller is a gain-scheduled type. In controller (12), its implementation requires the exact
knowledge of uncertain parameters. But we only know upper and lower bounds of uncertain parameters
instead of exact values. So it is difficult and impractical to apply this gain-scheduled robust optimal bang– bang

controller to a real practical system. In this section, we propose the LMI-based sufficient conditions for the
existence of robust saturation controller with a fixed gain instead of gain-scheduled.

To formulate new controller, Eq. (12) can be expressed by using saturation function instead of sign
function.

uðtÞ ¼ �sat½dBTP0xðtÞ�, (16)

where d40 and P0 satisfies Eqs. (13)–(15) which correspond to 2Kþ1 þ K LMI conditions.
This robust saturation controller (16) has similar form to the suboptimal bang–bang controller ðuðtÞ ¼
�umax � sgn½B

TP0xðtÞ�Þ for nominal LTI system and is expressed by using saturation function instead of sign
function. Note that using saturation function is a typical choice to overcome control chattering problem
occurring in sign-function-type controllers.

We can express Eq. (16) in the following form introducing bðxðtÞÞ:

uðtÞ ¼ �bðxðtÞÞ � dBTP0xðtÞ,

bðxðtÞÞ ¼
satðdBTP0xðtÞÞ

dBTP0xðtÞ
,

bðxðtÞÞ ¼ 1 if BTP0xðtÞ ¼ 0, ð17Þ

where 0obðxðtÞÞp1.
Along the trajectories of system (9) with the controller given in Eq. (17), the time derivative of V ðx; yÞ in

Eq. (5) is obtained

_V ðx; yÞ ¼ xT½AðyÞTPðyÞ þ PðyÞAðyÞ�x

þ xT �b � d � 2P0BBTP0 þ
XK

i¼1

yiðP0BBTPi þ PiBBTP0Þ

( )" #
x. ð18Þ
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To show _V ðx; yÞo0, we first seek K þ 1 symmetric matrices P0;P1;P2; . . . ;PK which satisfy that the first
term in the right-hand term of Eq. (18) is less than 0, and then substitute the found matrices into the second
term in the right-hand term of Eq. (18). Robust stability of the saturation controller (16) is guaranteed if the
second term in the right-hand term of Eq. (18) is less than 0 with d40. But it is not guaranteed that the
second term in the right-hand term of Eq. (18) is less than 0 with d40. Unfortunately, we cannot guarantee
robust stability of controller (16) in this way. To guarantee robust stability of controller (16) we propose
the following theorem which gives sufficient conditions for the existence of robust saturation controller
with a fixed gain.

Theorem 1. Consider an uncertain LTI system (9) where AðyÞ depends affinely on the parameter vector

y ¼ ðy1; y2; . . . ; yK Þ, yi satisfies Eq. (3), and control force has constraint of Eq. (10). Let Y denote the

sets of vertices of the parameter box Eq. (4). Robust stability of the saturation controller (16) is guaranteed if

there exist K þ 1 symmetric matrices P0;P1;P2; . . . ;PK , and positive-definite symmetric matrix Ma satisfying

Eqs. (13), (15), and (19), and if there exists d40 which satisfies Eq. (20) for these matrices P0;P1;P2; . . . ;PK

and Ma.

AðoÞTPðoÞ þ PðoÞAðoÞ þMao0 for all o 2 Y, (19)

Ma þ d � 2P0BBTP0 þ
XK

i¼1

yiðP0BBTPi þ PiBBTP0Þ

( )
40 for all o 2 Y. (20)
Proof. The following equation is obtained from adding and subtracting Ma each term in the right-hand term
of Eq. (18):

_V ðx; yÞ ¼ xT½AðyÞTPðyÞ þ PðyÞAðyÞ þMa�x

þ xT �Ma � b � d � 2P0BBTP0 þ
XK

i¼1

yiðP0BBTPi þ PiBBTP0Þ

( )" #
x. ð21Þ

We assume that there exist symmetric matrices P0;P1;P2; . . . ;PK , and Ma satisfying that the first term in the
right-hand term of Eq. (21) is less than 0. Robust stability of the saturation controller of Eq. (16) is guaranteed
if the second term in the right-hand term of Eq. (21) is less than 0 with d40 when we substitute these matrices
into the second term in the right-hand term of Eq. (21). The first term in the right-hand term of Eq. (21) is
always less than 0 if there exist symmetric matrices P0;P1;P2; . . . ;PK , and positive-definite symmetric matrix
Ma satisfying Eqs. (13), (15), and (19). Let ri ¼ dyi ði ¼ 1; 2; . . . ;KÞ, then d yi pripdyi and the second term in
the right-hand term of Eq. (21) is rewritten as follows:

�xT Ma þ b dð2P0BBTP0Þ þ
XK

i¼1

riðP0BBTPi þ PiBBTP0Þ

( )" #
x. (22)

Here we first consider the case of b ¼ 1. For given d40, the following LMI of Eq. (23) is a convex constraint
on the variables ri because Ma, P0BBTP0, and P0BBTPi þ PiBBTP0 are the symmetric matrices respectively:

Ma þ dð2P0BBTP0Þ þ
XK

i¼1

riðP0BBTPi þ PiBBTP0Þ40. (23)

When we define F as the set of the 2K vertices of ri, Eq. (23) is satisfied for all ri if and only if Eq. (23) is
satisfied in F by convexity of Eq. (23).

F :¼ fðc1;c2; . . . ;cK Þ : ci 2 fd yi; dyigg. (24)

Eq. (23) is equivalent to Eq. (20). Next we consider the case of 0obo1. For given d40, we can easily show
that Eq. (22) is less than 0 if Eq. (23) is satisfied. Therefore, Eq. (22) is always less than 0 if Eq. (20) is satisfied
for given d40. &
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Remark 1. In Eq. (19), we must solve LMIs with K þ 2 variables including matrix Ma. To reduce numerical

computational burden we can reduce them to LMIs with K þ 1 variables by setting Ma in an arbitrary matrix.
And we can seek dmax by setting d in a fixed value and sweeping through d in Eq. (20), because the maximum
value of d satisfying Eq. (20) is finite ð0odpdmaxÞ. d is used to maximize the utilization of the available control
force. The control performance can be improved by using large d.
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Remark 2. There is a difficulty in the numerical implementation of Theorem 1. It comes from the multi-
convexity constraint of Eq. (15). As suggested in Ref. [16], we can relax the multi-convexity of the function
dV ðx; yÞ=dto0 by only requiring that it is bounded by a multi-convex function. In this case, for nonnegative
definite symmetric matrix Ni ði ¼ 1; 2; . . . ;KÞ LMI conditions of Eqs. (15) and (19) are replaced by the
following equations:

AðoÞTPðoÞ þ PðoÞAðoÞ þMa þ
XK

i¼1

o2
i Nio0 for all o 2 Y, (25)

AT
i Pi þ PiAi þNiX0 for i ¼ 1; 2; . . . ;K , (26)

NiX0 for i ¼ 1; 2; . . . ;K . (27)

A simple remedy is to choose Ni ¼ liI with li40.

While it is not optimal any longer, this proposed robust saturation controller does not require the exact
values of the uncertain parameters. So it is easy and practical to apply this robust saturation controller to a
real practical system.
5. Numerical example

In this section, a practical numerical example for a linear building is illustrated to verify the
feasibility of the proposed robust saturation controller with a fixed gain (16) and simulation
results are presented. LMIs in Theorem 1 are solved using Matlabs and LMI control toolbox [22].
Controller design parameter Ma is chosen at an arbitrary value by trial and error as suggested in
Remark 1.

A three-story scaled building model studied by Kobori and Kamagata [23], Yang et al. [9], and
Cai et al. [14], in which every story unit is identically constructed and an active brace system (ABS)
is installed in the first-story unit, as shown in Fig. 1, is considered. The mass, stiffness and damping
coefficient of each story unit for nominal system are mi ¼ 1000 kg, ki ¼ 980 kN=m, and ci ¼ 1:407 kN s=m,
respectively, for i ¼ 1; 2; 3. The El Centro earthquake (north–south component, 1940) scaled to a
maximum acceleration of 0:112g is used as the input excitation. The maximum control force
umax is 700N and uncertainties of the system are stiffnesses and damping coefficients of each floor.
Let uncertainties of stiffnesses be yi ði ¼ 1; 2; 3Þ and the uncertainties of damping coefficients
yi ði ¼ 4; 5; 6Þ, then the admissible trajectories are given by kið1þ yiÞ for i ¼ 1; 2; 3 and ci�3ð1þ yiÞ for i ¼

4; 5; 6 specified in multiplicative form. This uncertain system can be described by state space equation
as follows:

_xðtÞ ¼ AðyÞxðtÞ þ BuðtÞ þ E €xg, (28)

where xi ði ¼ 1; 2; 3Þ are the relative displacement of each floor to ground, state vector x ¼ ½x1 x2 x3 _x1 _x2 _x3�
T,

control input vector B ¼ ½0 0 0 1=m1 0 0�T, the disturbance input vector E ¼ ½0 0 0 � 1� 1� 1�T, and
uncertain system matrix AðyÞ is

AðyÞ ¼ A0 þ y1A1 þ y2A2 þ y3A3 þ y4A4 þ y5A5 þ y6A6, (29)
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Fig. 1. Three-story building model with ABS.
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A0 ¼

0 0 0 1 0 0
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0 0 0 0 0 1

�
k1 þ k2

m1

k2

m1
0 �

c1 þ c2

m1
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m1
0

k2

m2
�
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m2
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m2
�
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�
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2
666666666666664
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0 0 0 0 0 0

0 0 0 0 0 0

�
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m1
0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666666664

3
7777777775
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 �
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A2 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�
k2

m1

k2

m1
0 0 0 0

k2

m2
�

k2

m2
0 0 0 0

0 0 0 0 0 0

2
666666666664

3
777777777775
; A5 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 �
c2

m1

c2

m1
0

0 0 0
c2

m2
�

c2

m2
0

0 0 0 0 0 0

2
66666666664

3
77777777775
,

A3 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 �
k3

m2

k3

m2
0 0 0

0
k3

m3
�

k3

m3
0 0 0

2
6666666666664

3
7777777777775
; A6 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 �
c3

m2

c3

m2

0 0 0 0
c3

m3
�

c3

m3

2
666666666664

3
777777777775
.

Before we confirm the robust stability of the proposed controller, we ascertain general trends of the
proposed controller according to the value of the controller design parameter Ma. For convenience we replace
Ma by maI with ma40. Firstly, we investigated bounds of parameter uncertainties according to ma. Let
ypyipy ði ¼ 1; 2; . . . ; 6Þ for all parameter uncertainties. We can examine some characteristics of the proposed
controller through Table 1. Table 1 shows allowable stable bounds of uncertainties yi of the proposed
controller with a fixed gain according to ma and compares them with those of the gain-scheduled controller.
The case of ma ¼ 0 corresponds to the gain-scheduled controller. Introducing ma to design the fixed-gain
controller makes bounds of parameter uncertainties narrower than those of the gain-scheduled controller.
And the larger ma is, the narrower bounds of uncertainties yi are. Secondly, we investigated control
performance according to ma. The control performance can be improved by using large d because d is used to
maximize the utilization of the available control force. Let jyijpye ði ¼ 1; 2; . . . ; 6Þ for all parameter
uncertainties. Here we set ye arbitrarily. Table 2 shows values of dmax according to ma in the case of ye ¼ 0:4.
The larger ma is, the larger dmax is. So the larger ma makes the control performance better because dmax is closely
related to the control performance of the proposed controller. Note that dmax ¼ 0 in the case of ma ¼ 0. This
means that the second term in the right-hand term of Eq. (18) is not less than 0 with d40. However,
introducing the controller design parameter Ma can make d40 as can be seen in Eq. (20).

Next, we confirm the robust stability and the effectiveness of the proposed controller. For given bounds of
uncertain parameters ye ¼ 0:4, the controller design parameter Ma ¼ diagð5e5; 5e5; 5e5; 5e2; 5e2; 5e2Þ is
chosen for good performance of the controller. The computed value of dmax is about 519. We designed the
robust saturation controller (16) with d ¼ 519. Control performance of the proposed controller is compared
with other controllers from the viewpoint of maximum responses (maximum interstory drifts di and maximum
absolute accelerations €xai).
Table 1

Bounds of uncertainties yi according to ma

ma y y

0 �0.99 175

10 �0.99 169

50 �0.99 161

100 �0.99 158

500 �0.99 125
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Table 2

Values of dmax according to ma (jyijp0:4)

ma dmax

0 0

5e1 0.9

5e2 1.1

1e3 2.1

5e3 4.2

1e4 21.6

5e4 88.3

6e4 104.5

Table 3

Maximum response values for nominal system

Story No control LQR MBBC SSMC Proposed

di ðcmÞ €xai ðm=s
2
Þ di ðcmÞ €xai ðm=s

2
Þ di ðcmÞ €xai ðm=s

2
Þ di ðcmÞ €xai ðm=s

2
Þ di ðcmÞ €xai ðm=s

2
Þ

1 1.34 3.13 0.88 2.25 0.51 1.64 0.52 1.62 0.53 1.60

2 1.02 4.75 0.66 3.24 0.47 2.27 0.49 2.27 0.48 2.20

3 0.60 5.84 0.35 3.41 0.32 3.20 0.33 3.27 0.32 3.17
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For nominal system, Table 3 shows control performance of the proposed controller on maximum response
values of the system in comparison with those of the classical LQR controller, the modified bang–bang
controller (MBBC), and the saturated sliding mode controller (SSMC). The LQR controller is adjusted so that
maximum control force is about 700N. It is observed from Table 3 that control performances of saturation
controllers such as the MBBC, the SSMC, and the proposed controller are quite remarkable in comparison
with that of the LQR controller. Time histories for absolute acceleration of the third-story unit, drift of the
first-story unit, and control force using the LQR controller and the proposed controller are presented in Fig. 2
in comparison with the responses without control. Saturation controllers considering the limit of control force
are known to be more effective than the LQR controller in maximum response reduction under the same
maximum control force (see Ref. [7] for the MBBC and Ref. [9] for the SSMC). The proposed controller also
produces better performance than the LQR controller in terms of maximum response reduction under the
same maximum control force as shown in Table 3 and Fig. 2. In the reduction of interstory drifts, the MBBC is
the most effective and the proposed controller and the SSMC have almost the same effectiveness.

For uncertain system, we ascertained that our proposed controller guarantees robust stability within all the
range of parameter uncertainties considered in controller design. Robust stability of the proposed controller,
which is guaranteed in Theorem 1 analytically, was verified through numerical simulations for the cases with
various parameter uncertainties. Among them, Fig. 3 shows responses (absolute acceleration of the third-story
unit and drift of the first-story unit) of the system and control force in the case of parameter uncertainties with
y1 ¼ y2 ¼ y3 ¼ 0:4 and y4 ¼ y5 ¼ y6 ¼ �0:4, and Table 4 shows control performance of the proposed
controller on maximum response values of the system in comparison with that of the SSMC in the case of
parameter uncertainties with yi ¼ 0:4 ði ¼ 1; 2; . . . ; 6Þ and yi ¼ �0:4 ði ¼ 1; 2; . . . ; 6Þ. The control performances
of these two controllers are almost similar. Through extensive numerical simulations, it is checked within
considered bounds of parameter uncertainties that the proposed controller has almost the same effectiveness
in maximum responses reduction in comparison with the SSMC. But from the viewpoint of robust stability,
only the proposed controller can address bounds of parameter uncertainties analytically within which robust
stability is guaranteed over the complete response of system.

Our proposed controller uses saturation function instead of sign function. And for given bounds of
parameter uncertainties, maximum value of d guaranteeing robust stability of this controller is finite. The
larger bounds of parameter uncertainties are, the smaller maximum value of d is. So the slope of saturation
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Fig. 3. Time histories of responses for uncertain system with parameter uncertainties (y1 ¼ y2 ¼ y3 ¼ 0:4 and y3 ¼ y4 ¼ y5 ¼ �0:4)
applying the proposed controller ( , no control; , proposed controller).

Fig. 2. Comparison of responses and control forces for nominal system applying the LQR controller and the proposed controller ( , no

control; , LQR controller; , proposed controller).

C.W. Lim et al. / Journal of Sound and Vibration 294 (2006) 1–14 11
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Table 4

Maximum response values for uncertain system

Story yi ¼ 0:4 ði ¼ 1; 2; . . . ; 6Þ yi ¼ �0:4 ði ¼ 1; 2; . . . ; 6Þ

No control SSMC Proposed No control SSMC Proposed

di ðcmÞ €xai ðm=s
2
Þ di ðcmÞ €xai ðm=s

2
Þ di ðcmÞ €xai ðm=s

2
Þ di ðcmÞ €xai ðm=s

2
Þ di ðcmÞ €xai ðm=s

2
Þ di ðcmÞ €xai ðm=s

2
Þ

1 0.70 2.11 0.31 1.86 0.31 1.82 1.64 2.82 1.05 1.91 1.06 2.01

2 0.57 3.39 0.28 1.91 0.28 1.94 1.34 3.45 0.97 2.37 0.97 2.47

3 0.34 4.64 0.20 2.69 0.19 2.64 0.79 4.63 0.61 3.60 0.61 3.59

umax

 

 �e

State

− umax

↑

Control Force

Fig. 4. The slopes of saturation function of the proposed controller according to given bounds of parameter uncertainties.

Fig. 5. Comparison of control forces of the proposed controller for nominal system according to given bounds of parameter uncertainties

( , ye ¼ 0:0; , ye ¼ 0:2; , ye ¼ 0:4).

C.W. Lim et al. / Journal of Sound and Vibration 294 (2006) 1–1412
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function is gentler as bounds of parameter uncertainties are larger as shown in Fig. 4. This trend can be
checked through Fig. 5 in our example. Fig. 5 shows control forces of three cases (ye ¼ 0, 0.2, and 0.4) for
nominal system. The case of ye ¼ 0 shows bang–bang-type control force of the MBBC because it corresponds
to nominal system. The slope of ye ¼ 0:4 is gentler than that of ye ¼ 0:2 because of smaller maximum values of
d. Therefore, our proposed controller moves away further from bang–bang-type controller and its control
performance may be worse in comparison with the MBBC for nominal system as bounds of parameter
uncertainties are larger. However, we can guarantee robust stability at the cost of performance degradation.

In actual civil engineering structural control, one of the inevitable problems in large-scale practical
applications is time delay. Servo-hydraulic actuators and servo-motors are often used as control force devices
[3]. Time delay exists obviously in these actuators and it results in unsynchronized control force applied to the
structures. Neglecting this time delay may even render the control system unstable. There are some methods to
overcome time delay problem. One is to design controller using mathematical model in which actuator’s
dynamics are included [8,24]. And another method is to include time delay in controller design [25–27].

6. Conclusions

The objective of this paper is to develop robust saturation controller guaranteeing robust stability of
uncertain LTI system over the prescribed upper and lower bounds of structured real parameter uncertainties
analytically. Based on AQS and multi-convexity concept, the robust optimal bang– bang controller was newly
derived by minimizing the time derivative of affine Lyapunov function subjected to the limit of control force.
This controller guarantees the closed-loop robust stability of the system within bounds of parameter
uncertainties in the presence of actuator’s saturation. The bounds of parameter uncertainties in this controller
are much broader than those in the robust optimal bang–bang controller based on quadratic stability. Since this
controller is gain-scheduled controller type, it requires the exact knowledge of uncertain parameters.
Therefore, it is impractical to apply this controller to real systems. To overcome this shortcoming, another
robust saturation controller with a fixed gain was proposed by modifying this robust optimal bang–bang

controller. While the new controller is not optimal any longer, it does not require the knowledge of uncertain
parameters. Theorem 1 suggested in this paper gives the LMI-based sufficient conditions for the existence of
this fixed-gain controller by introducing controller design parameter Ma.

Some characteristics of the proposed controller were examined through numerical simulations. Introducing
the controller design parameter Ma to design the fixed-gain controller makes bounds of parameter
uncertainties narrower than those of the gain-scheduled robust optimal bang– bang controller. Also, the larger
the bounds of parameter uncertainties are, the smaller the maximum value of d in controller (16) is. Therefore,
while the proposed controller guarantees robust stability within bounds of parameter uncertainties, its control
performance may be worse in comparison with any other saturation controllers for nominal system. Note that
to guarantee the robust stability for the system uncertainties, which is inevitable in real world, sacrificing the
performance a little can be sensible and practical.

The availability and the effectiveness of the proposed controller were also verified through numerical
simulations. Simulation results show that the proposed controller is robustly stable with respect to parameter
uncertainties over the prescribed upper and lower bounds and the proposed controller can be easily applicable
for civil engineering structures.
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